除数是两位数的除法数学教学反思
除数是两位数的除法数学教学反思
作为一位刚到岗的教师,教学是我们的任务之一,写教学反思能总结我们的教学经验,我们该怎么去写教学反思呢?下面是小编为大家收集的除数是两位数的除法数学教学反思,仅供参考,大家一起来看看吧。
除数是两位数的除法数学教学反思1今天我讲了:除数是两位数的除法,感觉教学效果不太好,反思教学过程,感悟颇多。
早就听有经验的老师说过,这堂课不太好上,学生们接受的要慢一些,今天看来确实有一定的难度,本来教学设计就有点生硬、过程无趣,学生迟迟找不到感觉和好的方法,只有一步一步慢慢引导。
除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点就是试商。
课上我先让学生回忆除数是一位数除法的计算过程,孩子们能够说出要先从最高位开始除起,最高位不够除,就要看前两位,除到哪一位就把商写在哪一位。
在学习除数是两位数的除法的笔算时,学生已经有了口算的基础,在试商时,学生按老师要求先把想的内容写下来,例如:24560=? 想:604=240,240最接近245,所以商试4。再例如:18929=?想:把29看成30的话,306=180,180最接近189,那么商试6。接着还需理解两位数除法中,前两位不够除时,看前三位,商写在个位;而当前两位够除时,就要先除前两位、商写在十位,例如:31815=?就是这样。通过多次巩固商书写的位置和除的顺序的基本问题学生基本解决。之后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。 学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商时,在试商过程中,一般都要调商,往往要经过多次调试方能求出商数来。尽管教学时总结出了用四舍时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而五入时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。
课上,特别针对试商、调商进行了大量练习,尤其是对于除数是24、25、26等的题进行了强调,例如:19526=?把26想成 25,258=200,所以商试7。之后巩固记忆254=100、255=125、256=150、257=175,258=200等。
课后,通过学生的作业,针对出现的问题,我又进行了针对性的练习。另外,在做完题后,让学生加上了验算,使其能够自我验证,自我检查,反而出错的几率小了很多。然后还让学生每天花上几分钟进行口算练习,为笔算打好基础。
总之,在除数是两位数除法的试商教学中,四舍五入法、口算法、同头试商法和折半商五法可视其情况挑选应用,可以互相弥补,相得益彰,得到最佳教学效果,提高学生计算的正确率和速度。
除数是两位数的除法数学教学反思2今天我讲了《除数是两位数的除法》,本节课是让学生掌握用四舍五入法试商来计算除数接近整十数的两位数的笔算除法。我采用五步六动模式进行教学,觉得本节课非常成功。
在教学新课之前我先做了一些必要的铺垫,让学生熟悉了除数是整十数的笔算除法的计算方法,并提前进行了预习,了解学生的学情。在教学过程中我采取自主学习和小组合作学习的方式,学生的自学成果在小组内进行展示,小组长协助本组的学困生进行计算。在反馈展示环节中我让学生上台当小老师,讲解除法竖式的写法。其他学生可以提出疑惑,如竖式中为什么把62看成60来试商?试的商太大了该怎么办?除法竖式为什么这样写等。小老师尽职尽责的为同学讲解自己的计算过程,同学们也听得很认真,当讲解不明白的地方时我进行适当的指导和纠正。
整节课在我的引导下学生通过自学、组内交流、反馈展示,学生的学习积极性也被充分调动起来了,也培养了他们的自主学习兴趣。由于学生经历了数学知识的自主探究,最后我让学生试着用自己的话总结《除数是两位数的笔算除法》的方法及需要注意的地方时,学生们能总结到点上,整节课的效率都比较高效。
在平时的教学中我就非常注重引导学生进行自主探究,合作交流,感觉确实比较有成效。其实给学生一定的思维空间,学生就有更大的潜力可挖,可以让学生自己去思考、发现、归纳。教师只要发挥引导的作用,就能取得理想的教学效果。
除数是两位数的除法数学教学反思3除数是两位数的除法是小学生学习整数除法的关键阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。
从这一单元的教学中,我意识到,教材只是一个教学工具,应该是“用教材”,而不是“教教材”。在使用过程中,应该结合学生实际,灵活的使用教材,学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。在这种情况下,四舍五入法就显得不适应了,因为所取的近似数与原除数误差较大。
尽管教学时已给学生总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。针对这种情况,练习课中,在学生应用“四舍五入”法和口算方法试商的基础上,还要有针对性的帮助学生提高灵活试商的方法,如:4512÷47136÷26首先让学生确定商是几位数,初商在哪位,然后让学生讨论:被除数、除数有什么特点,该怎样试商?在此基础上,总结出了①同头试商法:如4512÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。
计算教学要注意引导学生理解算理。在本节课的教学中,我通过问学 ……此处隐藏983个字……算方法的过程,体会从不同的角度考虑问题。另外,无论是用想乘法算除法还是把除数转化为一位数的除法,对同学的后面学习都是有用的,所以特别对同学说明,用自身喜欢的方法口算,同学学得轻松,又通过倾听和交流得到了发展和能力上的提高。3、多方面的评价。本节课我从计算的方法、计算的速度、学习态度以和参与活动的积极性等方面,都适时地对同学进行了恰当的评价,使每个同学都能获得胜利的体验,充沛感受到学习的快乐,从而激发了同学学习数学的积极性,调动了同学参与学习的能动性,从而保证了学习效果。
除数是两位数的除法数学教学反思6除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。
学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教材中分层次、分阶段内化了重点,分散了难点。
从这一单元的教学中,我意识到,教材只是一个教学工具,应该是“用教材”,而不是“教教材”。在使用过程中,应该结合学生实际,灵活的使用教材,可以在某些内容上进行适当的增、改。学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。在这种情况下,四舍五入法就显得不适应了,因为所取的近似数与原除数误差较大。尽管教学时已给学生总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。针对这种情况,练习课中,在学生应用“四舍五入”法和口算方法试商的基础上,还要有针对性的帮助学生提高灵活试商的方法,如:4512÷47136÷26首先让学生确定商是几位数,初商在哪位,然后让学生讨论:被除数、除数有什么特点,该怎样试商?在此基础上,总结出了:
①同头试商法:如4512÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。
②折半商五法:如136÷26这道题,因为被除数的前两位接近除数的一半,所以直接商5,比较简便。学生对此很感兴趣,积极投入到学习当中,有效的提高了学生试商的速度。
总之,在除数是两位数除法的试商教学中,“四舍五入”法、口算法、同头试商法和折半商五法可视其情况挑选应用,可以互相弥补,相得益彰,得到最佳教学效果,提高学生计算的正确率和速度。
除数是两位数的除法数学教学反思7整理复习的过程,就是学生梳理相关知识、形成自己数学认知结构的过程,这个过程是一个主动探索、自主建构的过程。因此本节课重在学生的主动参与,有效措施引导学生积极地投入到整理和复习的过程中。
1、创设情景,解决实际问题
创设贴近生活、学生感兴趣的问题情境,使学生以积极、良好的状态投入到数学学习活动之中。学生在解决问题中全面激活所要整理的.知识内容,为后面整理知识、建构网络做好了铺垫。
2、回顾梳理,构建知识网络
给予学生独立思考、充分展示的空间,鼓励学生根据自己的认知水平和学习方式对已激活的知识进行重组,形成自己的认知结构。学生在此过程中,提高了数学学习能力,获得了成功的体验。
3、综合练习,灵活应用知识
充分利用教材资源,引导学生将知识广泛应用于新的问题情境中。通过基础练习、辨析练习和解决问题,进一步发展学生的数学能力,感受应用数学的乐趣。
除数是两位数的除法数学教学反思8本节课我在确定教学目标时注重整体性。回忆算理算法,熟练技能;沟通知识间的内在联系,重新建构知识网络;通过问题解决,训练学生多向思维,培养学生合作意识和情感价值观。把学生的终身可持续发展作为数学教育的根本目的。
“加强口算、淡定笔算、重视估算、注重算法多样化”这是计算教改的方向。课标指出“应让学生在具体运算和解决简单实际问题的过程中体会乘与除的互逆关系。”因此本课在设计过程中没有把笔算的方法、技能作为复习的重点,而是让学生“体会、运用”乘除法的关系作为一项重要的教学目标贯穿在全课之中。通过小红、小亮、小明不同的计算结果的批改及根据小亮的正确算式1998÷54=37口算1999÷54=()……()等,让学生自觉运用乘除法之间的关系进行估算、验算、灵活解决实际问题,这样不仅使学生的计算能力有了较大的提高,而且学生思维的灵活性、创造性得到了良好培养。
数学思想方法是指在认识或处理各种数学或者非数学现象的思维过程中,所表现出来的种种数学观念及思维方式。在课堂教学中渗透数学思想方法的教学,使学生掌握基本数学思想和方法不仅使学科学习变得容易,而且对于学生将来从事的工作,随时随地发生作用,使他们受益终生。在本堂课的教学设计中,有机渗透了分类思想(把8个算式按不同的标准进行分类),函数思想(除数不变的情况下如何判断商的大小),极限思想(有没有最大、最小值,如有分别是多少)估计思想(谁的计算结果是正确的,哪一个商最大等)等。通过对各种数学思想方法的渗透教学,使学生真正学会数学的思考。如借助分类思想,使学生很好地把试商方法、估商方法、计算方法、乘除互逆关系有机地整合起来。
数学源于生活,应用于生活。我在课堂上努力使学生身临其境,体验生活、感悟数学。
除数是两位数的除法数学教学反思9本节课是在学生已经掌握了一个数除以一位数,商是两、三位数除法的基础上进行的。由于商的最高位的试商方法与除数是一位数的除法完全相同,因此我在教学开始前进行了除数是一位数的除法复习,并要学生说一说计算的步骤充分调动学生已有的知识储备,为后面的教学打下基础。在新授环节,我大胆放手让学生自己去总结归纳,并采用小组合作的方式进行探究概括,在已有知识的基础上通过观察、比较、概括出除数是两位数的计算法则,培养学生初步运用迁移进行类推和综合概括的能力。然后让学生比较除数是两位数除法和除数是一位数除法在计算时的异同,加强新旧知识的联系。
在整个教学过程中我特别注意让学生自己探索尝试,通过动脑、动手、动口学习新知识,参与教学过程,调动学生的学习积极性。
这节课存在的问题是:本节课的教学是在除数是一位数的计算法则下进行的,学生已经较熟练的掌握了除法的计算步骤,只是没有达到能用语言表述出来的程度,因此在教学时计算应该不再是本节课的重点,教学重点应是让学生感悟在进行除法计算时看被除数的前几位与除数位数的关系,这点在教学中体现得不够,在练习时应多注意这些联系,练习设计应与本节课的重点结合起来并力求高效。
文档为doc格式